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We investigate fermionic superconductivity with mismatched Fermi surfaces in a general two-band system.
The exchange interaction between the two bands changes significantly the stability structure of the pairing
states. The Sarma state with two gapless Fermi surfaces, which is always unstable in single-band systems, can
be the stable ground state in two-band systems. To realize a visible mismatch window for the stable Sarma
state, two conditions should be satisfied: a nonzero interband exchange interaction and a large asymmetry
between the two bands.
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I. INTRODUCTION

The Cooper pairing with mismatched Fermi surfaces,
which has been investigated many years ago,1,2 promoted
new interest in the study of new superconducting materials in
strong magnetic field and ultracold fermions due to the real-
ization of superfluidity in resonantly interacting Fermi gases.
The well-known theoretical result for s-wave weak-coupling
superconductors is that, at a critical mismatch, called
Chandrasekhar-Clogston limit �CC limit� hc=0.707�0, where
�0 is the zero temperature gap, a first-order phase transition
from the gapped BCS state to the normal state occurs.3 Fur-
ther theoretical studies showed that the inhomogeneous
Fulde-Ferrell-Larkin-Ovchinnikov �FFLO� state2 may sur-
vive in a narrow window between hc and hFFLO=0.754�0.
However, since the thermodynamic critical field is much
smaller than the CC limit due to strong orbit effect,3 it is hard
to observe the CC limit and the FFLO state in ordinary su-
perconductors. In recent years, some experimental evidence
for the FFLO state in heavy fermion superconductors,4 high
temperature superconductors5 and organic superconductors6

were found. More recently, in the study of ultracold atoms,
Fermi superfluidity with population imbalance was realized
by MIT and Rice groups independently.7 The ultracold fer-
mion experiments have promoted a lot of theoretical
works8–11 on the superfluidity mechanism and the phase dia-
grams for the crossover from Bardeen-Cooper-Schrieffer
�BCS� to Bose-Einstein condensation �BEC�.12 The problem
of imbalanced pairing is also related to the study of color
superconductivity and pion superfluidity in dense quark
matter.13,14

While most of the theoretical works focus on the inhomo-
geneous FFLO state, we in this paper are interested in the
homogeneous and gapless Sarma state.1 For weak-coupling
superconductors, the Sarma state is located at the maximum
of the thermodynamic potential of the system and therefore
cannot be the stable ground state. This was called Sarma
instability many years ago.1 The thermodynamic instability
of the Sarma state can be traced to the existence of gapless
fermion excitations which cause a very large density of state
at the gapless Fermi surfaces.1,2 To realize a stable Sarma
state, one should have some mechanism to cure the instabil-
ity. Forbes et al.15 proposed that, a stable Sarma state is
possible in a model with finite range interaction where the

momentum dependence of the pairing gap cures the instabil-
ity. On the other hand, when the attractive interaction be-
comes strong enough which can be realized in ultracold fer-
mion experiments, the stability of the Sarma state can be
changed. While the homogeneous Sarma state is always un-
stable at the BCS side of the BCS-BEC crossover, it becomes
stable in the deep BEC region.9 However, this stable Sarma
state at the BEC side is not the original “interior gap” or
“breached pairing” state with two gapless Fermi surfaces
proposed by Liu and Wilczek.16 Since the fermion chemical
potential becomes negative in the BEC region, the Sarma
state in this case possesses only one gapless Fermi surface,
and the matter behaves similar to a Bose-Fermi mixture.17

In this paper, we focus on how the multiband structure,
which may be realized in solid materials and optical lattices,
changes the stability of the Sarma state. We consider a gen-
eral two-band Fermi system and show that the interband ex-
change interaction can cure the Sarma instability, and the
Sarma state can be the stable ground state in visible param-
eter regions.

The multiband theory of BCS superconductivity was first
introduced by Suhl et al.18 in 1959 to describe the possible
multiple band crossings at the Fermi surface. The two-band
model has been applied to the study of high-Tc

superconductors19 to effectively describe the particular crys-
talline and electronic structure. Recently, it is found that the
material MgB2 is a standard two-band superconductor20 and
many experimental data can be explained by the two-band
model of BCS superconductivity. Multiband Fermi systems
may be realized experimentally with ultracold atoms in op-
tical lattice.21 For example, if we confine the cold atoms in a
one-dimensional periodic external potential, the band struc-
ture will form in the confined direction and the matter can be
regarded as a multiband system in two dimensions. In this
case, by adjusting the coupling strength, one can study the
possible BCS-BEC crossover in multiband systems.19,22 The
interband physics in optical lattices is recently studied,23 and
the multigap superfluidity is also possible in nuclear matter.24

The paper is organized as follows. In Sec. II we give an
introduction to the Sarma state in single-band systems. We
discuss the stability of the Sarma state in a general two-band
model in Sec. III and summarize in Sec. IV.
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II. SARMA STATE IN SINGLE-BAND MODEL

Before discussing the stability of Sarma state in two-band
systems, we in this section give a brief introduction to the
Sarma state in single-band systems. We start from the fol-
lowing standard BCS-type Hamiltonian:

H =� d3r��
�

��
†�r��−

�2

2m
− ������r�

− U�↑
†�r��↓

†�r��↓�r��↑�r�� . �1�

We constrain ourselves to discuss systems at zero tempera-
ture where the BCS mean-field theory can be applied even at
strong coupling.12 In the mean-field approximation, the
Hamiltonian is approximated by

Hmf =� d3r��
�

��
†�r��−

�2

2m
− ������r�

+ ��r��↑
†�r��↓

†�r� + H.c. +
	��r�	2

U � , �2�

where ��r�=−U
�↓�r��↑�r�� is the order-parameter field of
superconductivity. For homogeneous superconductivity, the
thermodynamic potential � can be obtained by using the
standard diagonal method.18 It can be expressed as

� =
�2

U
+� d3k

�2��3��	k − Ek� + �
�

Ek
�
�− Ek

��� , �3�

with the definition of energy dispersions 	k=k2 / �2m�−�,
Ek=�	k

2 +�2, Ek
↑ =Ek+h, and Ek

↓ =Ek−h, where �= ��↑
+�↓� /2 and h= ��↑−�↓� /2 are, respectively, the averaged
and mismatched chemical potentials and � is the modulus of
��r�.

Without loss of generality, we set h�0. The possible
ground state of the system corresponds to the stationary point
of the thermodynamic potential �. This gives the so-called
gap equation,

� 1

U
−� d3k

�2��3


�Ek
↓�

2Ek
�� = 0. �4�

To properly achieve strong coupling, the chemical potentials
should be renormalized by the number equations. The num-
ber density n and spin-density imbalance � can be evaluated
as

n = n↑ + n↓ =� d3k

�2��3�1 −
	k

Ek

�Ek

↓�� ,

� = n↑ − n↓ =� d3k

�2��3
�− Ek
↓� . �5�

Whether the Zeeman energy imbalance h or the spin-density
imbalance � is experimentally adjusted depends on detailed
systems. For cold atoms, the spin-density imbalance � is di-
rectly tuned, but in superconductors, the Zeeman splitting h
is adjusted via an external magnetic field.

A. Stability analysis

If a solution of the gap equation is the ground state of the
system, it should be the global minimum of the thermody-
namic potential �.15,25 The condition for a local minimum of
� is that

�����
��

= 0,
�2����

��2 
 0. �6�

The first condition corresponds to the gap equation, and the
second-order derivative I=�2���� /��2 can be evaluated as

I =� d3k

�2��3

�2

Ek
2�
�Ek

↓�
Ek

− ��Ek
↓�� . �7�

Let us study the Sarma state with h
� which induces a
nonzero-spin-density imbalance �. At weak coupling, I can
be approximately evaluated as

�2I

m

 �2m��1 −

h
�h − ��
�h2 − �2 � , �8�

which shows that �2���� /��2 is always negative and there-
fore the Sarma state is unstable.

To achieve the BCS-BEC crossover, we renormalize the
coupling constant with the two-body scattering length as,

m

4�as
= −

1

U
+� d3k

�2��3

m

k2 . �9�

In this case, we first solve the coupled gap and number equa-
tions at fixed total density n=kF

3 / �3�2�. The result can be
expressed9 as a function of the dimensionless coupling pa-
rameter g=1 / �kFas� and the population imbalance P=� /n.
The numerical calculations show that the key quantity I is
always negative at the BCS side of the resonance �as�0,g
�0� where the Sarma state has two gapless Fermi surfaces,
but the Sarma state can be a stable ground state in the strong-
coupling BEC region �roughly for g
2.2� where the chemi-
cal potential � become negative. However, this Sarma state
has only one gapless Fermi surface and is different from the
Fermi-surface topology of the so-called breached pairing
state.

B. Solution at weak coupling

At weak coupling where the chemical potential � is well
approximated by the Fermi energy �F, the gap equation can
be approximated by

� 1

UN
− �

0

�

d	

��	2 + �2 − h�

�	2 + �2 �� = 0, �10�

where N is the density of state for each spin state at the
Fermi surface and � is the energy cutoff which plays the role
of Debye energy ��D in solids. After the integration and
using the condition ���, we find

� 1

UN
− ln

2�

�
+ 
�h − ��ln

h + �h2 − �2

�
�� = 0. �11�

There are three possible solutions to the gap Eq. �11� for
h�0. The first is the trivial normal phase with �N=0. The
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second corresponds to the ordinary fully gapped BCS solu-
tion satisfying �
h,

�BCS = �0 = 2�e−1/�UN�. �12�

The third solution, i.e., the gapless Sarma state satisfying
��h, can be analytically evaluated via the comparing with
the BCS solution. It is26

�S = ��0�2h − �0� . �13�

Using the weak-coupling approximation, the grand poten-
tial � for various solutions can be expressed as

� =
�2

U
+ 2N�

0

�

d	�	 − �	2 + �2

+ ��	2 + �2 − h�
�h − �	2 + �2�� . �14�

Performing the integral over 	 and using the condition �
�� as well as the gap equation to cancel the cut-off depen-
dence, we have

� = −
N

2
�2 − 
�h − ��Nh�h2 − �2. �15�

Note that we have set the grand potential of the normal state
at h=0 to be zero, �N�h=0�=0. To see why the Sarma state
is always thermodynamically unstable, one should calculate
the grand potential differences between Sarma and other two
states,26

�S − �BCS = N��0 − h�2,

�S − �N =
N

2
��0 − 2h�2, �16�

which confirm that the Sarma state always has higher poten-
tial than the BCS and normal states. As a consequence, there
exists a first-order phase transition from BCS to normal state.
From the result

�BCS − �N =
N

2
�2h2 − �0

2� , �17�

the transition occurs at the CC limit of BCS superconductiv-
ity, hc=�0 /�2.

III. SARMA STATE IN TWO-BAND MODEL

We in this section turn to the two-band model. Since the
goal of this paper is to search for the possibility of stable
Sarma state in general two-band Fermi systems, we consider
a continuum Hamiltonian and neglect the details of the band
structure in different systems. We will show that the key
point is the interband scattering which can make the Sarma
state stable in multiband systems. The possible complicated
lattice structure in various materials and optical lattices will
not qualitatively change our conclusion. The obtained con-
clusion is generic and may be useful for the study of super-
conducting materials and ultracold atom gases.

The continuum Hamiltonian of the two-band model can
be written as18

H =� d3r��
�,�

���
† �r��−

�2

2m�

− ��������r�

− �
�,�

U����↑
† �r���↓

† �r���↓�r���↑�r�� , �18�

where � ,�=1,2 denote the band and �= ↑ ,↓ denotes the
direction of fermion spin. In superconductors, the band de-
grees of freedom usually come from the particular crystalline
and electronic structure of the materials. In ultracold atom
gases, these degrees of freedom may come from different
hyperfine states or different atom species or the external pe-
riodic lattice potential. In general case, the effective fermion
mass depends only on the band index, but the chemical po-
tential is related to both the band and spin indices due to the
existence of external magnetic field or population imbalance.
The constants U11�U1 and U22�U2 are the intraband cou-
plings, and U12=U21�J is the interband exchange coupling.
For vanishing J, the model is reduced to a simple system
with two independent bands. In the following we focus on
how the interband coupling J changes the stability of the
Sarma state.

First we calculate the thermodynamic potential of the
two-band Hamiltonian. In the mean-field approximation, the
Hamiltonian is approximated by

Hmf =� d3r��
�,�

���
† �r��−

�2

2m�

− ��������r�

+ �
�

����r���↑
† �r���↓

† �r� + H.c.� +
1

G
�U2	�1�r�	2

+ U1	�2�r�	2 − J��1
��r��2�r� + �2

��r��1�r���� ,

�19�

where ���r�=−��U��
��↓�r���↑�r�� are two order-
parameter fields of the superconductivity and G is defined as
G=U1U2−J2. For homogeneous superconductivity, the ther-
modynamic potential � of this two-band model can be ob-
tained by using the standard diagonal method.18 It can be
expressed as

� =
1

G
�U2�1

2 + U1�2
2 − 2J�1�2 cos��1 − �2��

+ �
�
� d3k

�2��3��	k� − Ek�� + �
�

Ek�
� 
�− Ek�

� �� ,

�20�

with the definition of energy dispersions 	k�=k2 / �2m��−��,
Ek�=�	k�

2 +��
2, Ek�

↑ =Ek�+h�, and Ek�
↓ =Ek�−h�, where ��

= ���↑+��↓� /2 and h�= ���↑−��↓� /2 are, respectively, the
averaged and mismatched chemical potentials, and �� is the
modulus of �� and �� is their phases through the definition
��=��ei��. Without loss of generality, we take h�
0. For
J
0, the choice of �1=�2 is favored, otherwise there is
�1=�2+�. We assume J
0 and set �1=�2.
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The possible ground state of the system corresponds to
the stationary point of the thermodynamic potential �. This
gives the so-called gap equations,

�U�̄�̄

G
−� d3k

�2��3


�Ek�
↓ �

2Ek�

��� −
J

G
��̄ = 0, �21�

with �̄=1 for �=2 and �̄=2 for �=1. The gap equations are
essentially the same as derived in Ref. 18. To properly
achieve strong coupling, the chemical potentials should be
renormalized by the number equations. The number equa-
tions for the fermion density n� and density imbalance �� for
the �th band can be evaluated as

n� = n�↑ + n�↓ =� d3k

�2��3�1 −
	k�

Ek�


�Ek�
↓ �� ,

�� = n�↑ − n�↓ =� d3k

�2��3
�− Ek�
↓ � , �22�

and the total density n and total density imbalance � of the
system are defined as n=n1+n2 and �=�1+�2, respectively.

A. Stability analysis

Let us now discuss qualitatively what happens when the
mismatch h� increases. For vanishing mismatch, the system
is in a fully gapped BCS state with �1��10 and �2��20,
and the spin-density imbalance � is zero. With increasing h�,
while the BCS state is still a solution of the gap equations,
there may appear another solution �Sarma� where at least one
of the pairing gap �� is less than the corresponding mis-
match, namely, h�
��. In this state, the dispersion of the
quasiparticle Ek�

↓ becomes gapless and the system has a non-
zero spin-density imbalance �. Note that the normal state
with vanishing condensate is always a solution of the gap
equations and becomes the ground state when both h1 and h2
are large enough.

Different from the conventional Sarma state in single-
band models, we may have two types of Sarma states in
two-band systems. The first type �type I� is the solution
where both mismatches are larger than the corresponding
pairing gaps, namely, h1
�1 and h2
�2. For this type,
there exist gapless excitations in both bands. The second type
�type II� is the solution where only one mismatch is larger
than the corresponding pairing gap, h1
�1 and h2��2 or
h1��1 and h2
�2. For this type, gapless excitations exist
only in one band. We will show in the following that the
stabilities of these two types of Sarma states are quite differ-
ent.

A numerical example which supports the above argument
is shown in Fig. 1 for two symmetric bands with U1=U2. For
the sake of simplicity, in our numerical examples presented
here, we assume the same effective masses, chemical poten-
tials, and mismatches for the two bands, i.e., m1=m2�m,
�1=�2��, and h1=h2�h, this means that only the total
density n and total spin-density imbalance � can be adjusted.
We write U1 and U2 in terms of the s-wave scattering length
a� with a momentum cutoff k0, U�

−1=−m / �4�a��
+�	k	�k0

d3k / �2��3m /k2. Our qualitative conclusions do not

depend on the used regularization scheme. In the case of
U1=U2, the solutions of the gap equations are distributed
symmetrically in the �1−�2 plane. Besides the familiar BCS
and normal states which are, respectively, the global mini-
mum and a local minimum in Fig. 1, we have some Sarma
states in the potential contour. The Sarma states C and D are
of type I, C is the global maximum and D indicates two
saddle points. The type II Sarma states are marked by A and
B, corresponding, respectively, to two local minima and two
saddle points.

If a solution of the gap equations is the ground state of the
system, it should be the global minimum of the thermody-
namic potential �.15,25 The condition for a local minimum of
� is that the matrix

M =�
�2���1,�2�

��1
2

�2���1,�2�
��1 � �2

�2���1,�2�
��2 � �1

�2���1,�2�
��2

2
� �23�

should have only positive eigenvalues, namely, det M
0
and Tr M
0. The second-order derivatives can be evalu-
ated as

�2���1,�2�
���

2 =
2J

G

��̄

��

+ I�,

�2���1,�2�
��� � ��̄

= −
2J

G
, �24�

with the quantities I� defined as

I� =� d3k

�2��3

��
2

Ek�
2 �
�Ek�

↓ �
Ek�

− ��Ek�
↓ �� . �25�

For vanishing interband coupling J=0, the stability condition
becomes

I1I2 
 0, I1 + I2 
 0. �26�

Note that the properties of the functions I1 and I2 are the
same as the function I defined in Sec. II. Thus at the BCS
side, namely, for a1�0 and a2�0, the Sarma state is un-
stable.

Now we discuss how the interband coupling J modifies
the Sarma instability at the BCS side. For J�0, the stability
condition reads

2J

G
��1

�2
I1 +

�2

�1
I2� + I1I2 
 0,

2J

G
��1

�2
+

�2

�1
� + I1 + I2 
 0. �27�

For the type I Sarma state with h1
�1 and h2
�2, we have
I1�0 and I2�0. In this case, we can exactly prove that the
above two inequalities cannot be satisfied simultaneously.
This type of Sarma state should correspond to the maximum
or saddle point of the thermodynamic potential and is hence
unstable, such as points C and D in Fig. 1. However, the
situation changes for the type II Sarma state. Without loss of
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generality, let us discuss the case with h1
�1 and h2��2.
In this case, only the first band is gapless, and hence I1�0
and I2
0. From I2
0, the above two inequalities are
equivalent to the following one:

2J

G

�2

�1
+ I1�1 +

2J

GI2

�1

�2
� 
 0. �28�

Even though I1�0, this condition can be satisfied provided
that a nonzero interband coupling J is turned on. Suppose the
solution of the gap equations satisfies �1��2 and �1 is not
quite close to h1, which corresponds to the case with large
polarization �1, the first term in Eq. �28� is large but the
modulus of the second term is relatively small, and therefore
the stability condition can be satisfied, such as point A at the
upper-left corner in Fig. 1. However, on the other hand, for
�1�h1 which corresponds to the case with small polariza-
tion �1→0, the absolute value of I1 is very large, and the
Sarma state maybe unstable, which corresponds to the saddle
point B in the upper part of Fig. 1.

We conclude that, in two-band Fermi systems with non-
zero interband pairing interaction, the Sarma state can be-

come at least the local minimum of the thermodynamic po-
tential and therefore should be a potential candidate of the
ground state.

However, the condition J�0 is not sufficient for us to
have a real stable Sarma state. For the case with two sym-
metric bands shown in Fig. 1, we found that the global mini-
mum is always the BCS or normal state for any mismatch h,
which means that the Sarma state cannot be the ground state
even though it can be a local minimum. However, this can be
significantly changed if some asymmetry between the two
bands, such as unequal couplings U1�U2, is turned on. In
Figs. 2 and 3, we show the potential contour with U1�U2
for three values of h. In this case, the number of Sarma
solutions is largely suppressed due to the asymmetry, espe-
cially the state C in Fig. 1 as the global maximum of �
disappears. Without regard to the saddle points which are
impossible to be stable solutions, the only Sarma state
marked in Figs. 2 and 3 appears to be the global minimum of
the system when the mismatch h is in a suitable region. From
the top to the bottom in Figs. 2 and 3, when the mismatch h
increases, the global minimum changes from the BCS state
to the Sarma state and then to the normal state. In contrast to
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�

2
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A
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D
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1

(b)(a)

FIG. 1. �Color online� The thermodynamic potential contour ���1 ,�2� for two symmetric bands with U1=U2. A proper unit is chosen
such that the Fermi energy �F=200. The values of the other parameters are k0=100kF, J=10−4U0, with U0=4� / �mkF�, �kFa1�−1= �kFa2�−1

=−0.5, and h=75, where kF
�2m� is the Fermi momentum. The band on the right shows the relative strength of � corresponding to
different colors. For the parameter setting, we have U1=U2
0.0156U0, and hence J�U1 ,U2.
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the conventional single-band model where only one first-
order phase transition from the BCS to normal state is pre-
dicted, we have in this two-band system two first-order phase
transitions when h increases: The first is from the BCS to
Sarma state and the second is from the Sarma to normal
state. The first-order phase transition from BCS to Sarma
state was found in Ref. 15 by considering the momentum
structure of the pairing gap. For ultracold atom gases, the
chemical potential mismatch h should be replaced by the
spin population imbalance �. However, the phase structure
should be essentially independent of the assembles one
used,15,25 we here do not consider the case with fixed �.

Let us compare the numerical results presented in Figs. 2
and 3. In Fig. 3, the coupling asymmetry is much larger than
that in Fig. 2, we have �10 /�20
1.5 in Fig. 2 and �10 /�20

4 in Fig. 3. We find that the h window for the Sarma state
is wider when the coupling asymmetry becomes larger. In
Fig. 2, the window for Sarma state is roughly from h=52 to
h=71, and the CC limit is about hc
�20. In Fig. 3, this
window is roughly from h=20 to h=70, and the CC limit is
about hc
2.7�20.

B. Solutions at weak coupling

At weak coupling, the same tricks used in Sec. II can be
employed. For convenience, we define here a function,

F��,h� = �
0

�

d	

��	2 + �2 − h�

�	2 + �2


 ln
2�

�
− 
�h − ��ln

h + �h2 − �2

�
, �29�

and express the gap equations of our two-band model in
terms of it,

� U2

GN1
− F��1,h1���1 −

J

GN1
�2 = 0,

� U1

GN2
− F��2,h2���2 −

J

GN2
�1 = 0, �30�

where N1 and N2 are the densities of state at the Fermi sur-
faces for the two bands. Unlike the single-band model, the
above coupled gap equations cannot be solved analytically.
With the numerical solutions �1 and �2, the thermodynamic
potential can be evaluated as

� = − �
�
�N�

2
��

2 + 
�h� − ���N�h�
�h�

2 − ��
2� . �31�
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FIG. 2. �Color online� The thermodynamic potential contour ���1 ,�2� for two different bands with �kFa1�−1=−0.5 and �kFa2�−1

=−0.8 at h=45 �a�, 60 �b�, and 75 �c�. The other parameters are the same as that in Fig. 1.
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For the sake of simplicity, we consider the case h1=h2
=h which corresponds to the realistic two-band supercon-
ductors in strong magnetic field. Let us assume U1N1

U2N2 which leads to �1
�2. According to the stability
analysis, we have three possible ground states: �1� the nor-
mal state with �1=�2=0; �2� the gapped BCS state with
energy gaps �1��10
h and �2��20
h; and �3� the gap-
less Sarma state where only �1
h but �2�h. We focus here
on the case with �2��1 and J��U1U2. In this case, the
solution of �1 is approximately independent of h and is
given by

�1 = �10 
 2�e−1/�U1N1�, �32�

and the Sarma solution for �2 is determined by the following
equation:

ln
�20

h + �h2 − �2
2

=
J�10

U1U2N2
� 1

�20
−

1

�2
� , �33�

where �20 is obtained by the equation

1

U2N2
− ln

2�

�20
=

J

U1U2N2

�10

�20
. �34�

We have numerically checked that the above approximation
is sufficiently good for the scaled solution y=�2 /�20 as a
function of x=h /�20. Note that for J=0 the conventional
Sarma solution y=�2x−1�0.5�x�1� is recovered, but for
J�0 the Sarma solution is qualitatively changed: y=0 can-
not be a solution and there exist solutions for x
1. The
solutions for both cases of J=0 and J�0 are illustrated in
Fig. 4. We find that for J�0 the Sarma solution is quite
different from the conventional result. Unlike the well-
known Sarma solution which exists in the region 0.5�x
�1, for J�0 the Sarma state exists almost in the region x

1 where the BCS solution y=1 disappears. Obviously, in a
narrow region x�1 there exists a branch of the conventional
type which is unstable, and the multivalue behavior of y
means a first-order BCS-Sarma phase transition at a critical
field x1 which is slightly smaller than 1.

To discuss the thermodynamic stability of the Sarma state,
we then need to compare it with the normal state. In the case
of �2�h, we find
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FIG. 3. �Color online� The thermodynamic potential contour ���1 ,�2� for two different bands with �kFa1�−1=−0.5 and �kFa2�−1

=−1.5 at h=20 �a�, 25 �b�, and 70 �c�. The other parameters are the same as that in Fig. 1.
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�S − �N =
N1

2
�2h2 − �1

2� +
N2

2
�2h2 − �2

2 − 2h�h2 − �2
2� .

�35�

Some analytical estimations can be made. For large asymme-
try �2��1, around the h-window h��20 but h��10 for the
Sarma state, the sign of the quantity �S−�N is dominated by
the first term if N1 is not much smaller than N2. In this case,

the BCS solution is absent and the Sarma state is the stable
ground state. This argument confirms our conclusion from
the numerical results in Figs. 2 and 3: the h window for
stable Sarma state is wider when the asymmetry between the
two bands becomes larger. This means that the CC limit of
such a two-band superconductor can be much higher than the
conventional value hc=0.707�20.

IV. SUMMARY

We have studied the stability of Sarma state in two-band
Fermi systems via both the stability analysis and analytical
solution at weak coupling. From the stability analysis, the
Sarma state can be the minimum of the thermodynamic po-
tential and hence a possible candidate of the ground state if
the interband exchange interaction is turned on. Both nu-
merical and analytical studies show that a large asymmetry
between the two bands or the two pairing gaps is an impor-
tant condition for thermodynamic stability of the Sarma
state. When the condition is satisfied, two first-order phase
transitions will occur when the mismatch increases; one is
from the BCS to Sarma state at a lower mismatch and the
other is from the Sarma to normal state at a higher mismatch.
Our predictions could be tested in multiband superconduct-
ors and ultracold atom gases, and such a gapless supercon-
ductor may have many unusual properties, such as magne-
tism and large spin susceptibility.27,28
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